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Disclosed is a nanopatch graphene composite , which 
includes graphene including a defect and a nanopatch posi 
tioned on the defect , and is configured such that a nanopatch 
is formed through a self - assembling process on the surface 
of graphene , thus improving the mechanical properties and 
durability of the graphene composite . Also , a flexible 
organic transistor , including the nanopatch graphene com 
posite of the invention , is transparent and has high mechani 
cal durability , thus exhibiting device stability , and the 
molecular alignment of the organic semiconductor layer 
growing on the nanopatch graphene composite is induced so 
as to become favorable for charge injection , thereby increas 
ing the performance of the device . 
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( FIG . 4c ] 
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( FIG . 6A ) 

AU SD electrodes 
* * * 

SAMASSA SSSSSSSSSSSSSSSSSSSSS 
W 04 WWWWWW MV S 04 

1414 

Graphene 
SiO Si substrate 

( FIG . F 6B ] 

graphene comparative Device Example 1 

Drain current , lo ( PA ) 

wwwww 

- 20 0 20 40 60 
Gate voltage , Ves ( V ) 



Patent Application Publication Jan . 10 , 2019 Sheet 8 of 16 US 2019 / 0013488 A1 

( FIG . 7A ) 
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( FIG . F 8A ) 
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NANOPATCH GRAPHENE COMPOSITE AND 
METHOD OF MANUFACTURING THE SAME 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims the benefit of Korean Pat 
ent Application No . 10 - 2017 - 0085343 , filed on Jul . 5 , 2017 , 
the disclosure of which is incorporated herein in its entirety 
by reference . 

SUMMARY OF THE INVENTION 
[ 0004 ] Accordingly , the present invention has been made 
keeping in mind the problems encountered in the related art , 
and the present invention is intended to provide a nanopatch 
graphene composite and a method of manufacturing the 
same , in which the nanopatch graphene composite is con 
figured such that a nanopatch is formed through a self 
assembling process on the surface of graphene , thus improv 
ing the mechanical properties and durability of the graphene 
composite , W whereby the mechanical stability of a next 
generation flexible electronic device may be increased . 
[ 0005 ] An aspect of the present invention provides a 
nanopatch graphene composite , comprising graphene 
including a defect and a nanopatch disposed on the defect . 
[ 0006 ] The defect may be at least one selected from the 
group consisting of a grain boundary , a dot defect , a line 
defect , cracking , folding , and wrinkling . 
[ 0007 ] The nanopatch may include a self - assembled 
monolayer ( SAM ) . 
[ 0008 ] The self - assembled monolayer may be formed by 
self - assembling , on the defect , a compound represented by 
Chemical Formula 1 below : 

BACKGROUND OF THE INVENTION 

1 . Technical Field 

[ 0002 ] The present invention relates to a nanopatch gra 
phene composite and a method of manufacturing the same , 
and more particularly to a nanopatch graphene composite , 
which is configured such that a nanopatch is formed through 
a self - assembling process on the surface of graphene , thus 
improving the mechanical properties and durability of the 
graphene composite , whereby the mechanical stability of a 
next - generation flexible electronic device may be increased , 
and to a method of manufacturing the same . 

[ Chemical Formula 1 ] 

2 . Description of the Related Art 

RI - 51 - 0 - R4 [ 0003 ] Graphene , which is a two - dimensional material 
comprising an sp² carbon monolayer , exhibits superior opti 
cal , thermal , mechanical and electrical properties , and is thus 
receiving attention as a next - generation material for a soft 
electronic device . In order to commercialize graphene , there 
is a need to solve problems related to 1 ) the synthesis and 
transfer of graphene having a large area and high quality , 2 ) 
the analysis of basic graphene properties , 3 ) the develop 
ment of a process of fabricating a graphene - based device 
and 4 ) the optimization of graphene properties for a high 
performance device . Among these problems , the production 
of graphene having a large area and high quality on a desired 
substrate is regarded as very important . A chemical vapor 
deposition process enables graphene having a large area and 
high quality to be synthesized on a catalyst metal , and is thus 
considered to be very suitable for commercializing gra 
phene . However , since graphene is grown on the catalyst 
metal , the transfer thereof on the desired substrate is essen 
tially required . During the transfer of graphene , the proper 
ties of graphene may be greatly deteriorated , and thus not 
only the synthesis of graphene but also the transfer thereof 
are important . Many attempts have been made to perform 
various transfer methods using polymethyl methacrylate 
( PMMA ) as a transfer support layer so as to transfer gra 
phene having a large area and high quality , but micrometer 
scale graphene defects are generated . Thereby , poor prop 
erties compared to the inherent properties of graphene may 
be obtained , and in particular , mechanical durability is 
greatly decreased . When a flexible electronic device is 
manufactured using such defective graphene material , the 
stability and reliability of the device may also decrease . In 
order to solve such problems , introducing the support layer 
or increasing the bondability to the substrate may be con 
ducted , but a complicated additional process has to be 
inevitably carried out , and hence , limitations are imposed on 
selection of the substrate . 

[ 0009 ] in Chemical Formula 1 , 
[ 0010 ] R is a C3 to C30 alkyl group , 
[ 0011 ] R2 and R , which are identical to or different from 
each other , are independently a hydrogen atom or a C1 to C6 
alkyl group , and 
[ 0012 ] R * is a C1 to C6 alkyl group . 
[ 0013 ] The compound represented by Chemical Formula 1 
may be octadecyltrimethoxysilane ( OTS ) . 
[ 0014 ] The nanopatch may suppress or delay the fracture 
of the graphene growing on the defect upon transforming the 
graphene . 
[ 0015 ] The graphene may be at least one selected from the 
group consisting of single - layer graphene , double - layer gra 
phene and multilayer graphene . 
[ 0016 ] Another aspect of the present invention provides an 
organic transistor , comprising : a flexible substrate ; a semi 
conductor layer on the substrate ; and a gate electrode , a 
source electrode and a drain electrode , wherein at least one 
selected from the group consisting of the gate electrode , the 
source electrode and the drain electrode includes the nano 
patch graphene composite as above . 
[ 0017 ] The flexible substrate may be at least one selected 
from the group consisting of polydimethylsiloxane , polyim 
ide , polyethylene terephthalate , polyethylene naphthalate , 
polypropylene , polyethylene , polyamide and fiberglass - re 
inforced plastic . 
[ 0018 ] Still another aspect of the present invention pro 
vides a flexible strain sensor , comprising : a flexible sub 
strate ; an active layer formed on the flexible substrate and 
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including the nanopatch graphene composite as above ; and 
an electrode electrically connected to the active layer . 
[ 0019 ] Yet still another aspect of the present invention 
provides a method of manufacturing a nanopatch graphene 
composite , comprising : ( a ) providing graphene including a 
defect ; ( b ) oxidizing the graphene to bond a functional group 
containing an oxygen atom onto the defect , thus obtaining 
surface - modified graphene ; and ( c ) bonding a self - as 
sembled monolayer to the functional group , thus obtaining 
the nanopatch graphene composite . 
10020 ] In step ( c ) , the self - assembled monolayer may be 
formed by self - assembling a compound represented by 
Chemical Formula 1 below : 

[ Chemical Formula 1 ] 

R1 - - 0 - R4 

the results of measurement of grazing incidence X - ray 
diffraction ( GIXD ) thereof , and FIG . 4D is an image show 
ing the epitaxial structure of the self - assembled nanopatch 
layer in graphene ; 
[ 0033 ] FIG . 5 shows the results of analysis of UV - vis 
spectra of Example 1 - 1 and Comparative Example 1 ; 
[ 0034 ] FIG . 6A schematically shows a graphene field 
emission transistor , and FIG . 6B shows the results of per 
formance of the field emission transistors of Device 
Example 1 and Comparative Device Example 1 ; 
[ 0035 ] FIG . 7A shows the results of nanoindentation of 
Example 1 - 1 and Comparative Examples 1 and 2 , and FIG . 
7B shows the histogram of fracture loads to compare 
mechanical properties ; 
[ 0036 ] FIGS . 8A , 8B and 8C show the transfer curves for 
performance difference of the organic transistors of Device 
Example 2 and Comparative Device Example 2 ( FIG . 8A ) , 
Device Example 3 and Comparative Device Example 3 
( FIG . 8B ) , and Device Example 4 and Comparative Device 
Example 4 ( FIG . 8C ) ; 
[ 0037 ] FIG . 9 shows the two - dimensional grazing inci 
dence X - ray diffraction patterns of Device Examples 2 and 
3 and Comparative Device Examples 2 and 3 ; 
10038 ] FIG . 10 is a schematic view for measurement of 
resistance of the nanopatch graphene composites of 
Examples 1 - 1 and 1 - 2 ; 
10039 ] FIG . 11A shows the bending test system of a 
bending radius of 5 mm in Example 1 - 3 and Comparative 
Example 1 , and FIG . 11B is a graph showing how conduc 
tivity is maintained under a bending strain of 5 mm ; 
[ 0040 ] FIG . 12A shows a stretching test system ( scale bar , 
2 cm ) using a PDMS substrate of Example 1 - 4 and Com 
parative Example 1 , and FIG . 12B is a graph showing how 
the conductivity is maintained under tensile strain ; and 
[ 0041 ] FIGS . 13A and 13B are graphs showing changes in 
resistance depending on the movement of Device Example 
5 attached to the finger and the back of the hand , respec 
tively . 

[ 0021 ] in Chemical Formula 1 , 
[ 0022 ] R is a C3 to C30 alkyl group , 
[ 0023 ] R2 and R " , which are identical to or different from 
each other , are independently a hydrogen atom or a C1 to C6 
alkyl group , and 
[ 0024 ] R4 is a C1 to C6 alkyl group . 
[ 0025 ] The oxidizing may be selectively carried out on the 
defect of the graphene . 
[ 0026 ] The oxidizing may be performed using UV / ozone . 
[ 0027 ] According to the present invention , a nanopatch 
graphene composite is configured such that a nanopatch is 
formed through a self - assembling process on the surface of 
graphene , thus improving the mechanical properties and the 
durability of the graphene composite . 
[ 0028 ] Also according to the present invention , a flexible 
organic transistor , including the nanopatch graphene com 
posite of the invention , is transparent and has high mechani 
cal durability , thus exhibiting device stability , and the 
molecular alignment of the organic semiconductor layer 
growing on the nanopatch graphene composite is induced so 
as to become favorable for charge injection , thereby increas 
ing the performance of the device . 

DESCRIPTION OF SPECIFIC EMBODIMENTS 

BRIEF DESCRIPTION OF DRAWINGS 
[ 0029 ] FIG . 1A shows the structure of a nanopatch gra 
phene composite according to the present invention , FIG . 1B 
shows the structure of a flexible strain sensor including the 
nanopatch graphene composite , and FIG . 1C shows the 
structure of a flexible organic transistor including the nano 
patch graphene composite ; 
[ 0030 ] FIG . 2 is a flowchart showing a process of manu 
facturing a nanopatch graphene composite according to the 
present invention ; 
[ 0031 ] FIG . 3 shows AFM images of Example 1 - 1 and 
Comparative Example 1 ; 
[ 0032 ] FIG . 4A shows a STEM image using an energy 
dispersive spectrometer ( EDS ) of the nanopatch graphene 
composite of Example 1 - 1 , FIG . 4B shows the selected area 
electron diffraction ( SAED ) pattern thereof , FIG . 4C shows 

[ 0042 ] The present invention may be embodied in many 
different forms and should not be construed as being limited 
only to the embodiments set forth herein , but should be 
construed as covering modifications , equivalents or alterna 
tives falling within the ideas and technical scope of the 
present invention . In the description of the present invention , 
detailed descriptions of related known techniques incorpo 
rated herein will be omitted when it may make the gist of the 
present invention unclear . 
[ 0043 ] As used herein , the terms “ first " , " second " , etc . 
may be used to describe various elements , but these ele 
ments are not to be limited by these terms . These terms are 
only used to distinguish one element from another . For 
example , a first element may be termed a second element , 
and , similarly , a second element may be termed a first 
element , without departing from the scope of exemplary 
embodiments of the present invention . 
10044 . Further , it will be understood that when an element 
is referred to as being “ formed ” or “ layered ” on another 
element , it can be formed or layered so as to be directly 
attached to the entire surface or one surface of the other 
element , or intervening elements may be present therebe 
tween . 
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[ 0045 ] Unless otherwise stated , the singular expression 
includes a plural expression . In this application , the terms 
“ include ” or “ have ” are used to designate the presence of 
features , numbers , steps , operations , elements , parts , or 
combinations thereof described in the specification , and 
should be understood as not excluding the presence or 
additional probability of one or more different features , 
numbers , steps , operations , elements , parts , or combinations 
thereof . 
100461 FIG . 1A shows the structure of a nanopatch gra 
phene composite according to the present invention , FIG . 1B 
shows the structure of a flexible strain sensor including the 
nanopatch graphene composite , and FIG . 1C shows the 
structure of a flexible organic transistor including the nano 
patch graphene composite . 
[ 0047 ] Below is a description of the nanopatch graphene 
composite according to the present invention with reference 
to FIGS . 1A to 1C . 
[ 0048 ] The present invention addresses a nanopatch gra 
phene composite , comprising graphene including a defect 
and a nanopatch disposed on the defect . 
[ 0049 ] The defect may be at least one selected from the 
group consisting of a grain boundary , a dot defect , a line 
defect , cracking , folding , and wrinkling . 
[ 0050 ] The nanopatch may include a self - assembled 
monolayer ( SAM ) . 
10051 ] The self - assembled monolayer may be formed by 
self - assembling , on the defect , a compound represented by 
Chemical Formula 1 below : 

ide , polyethylene terephthalate , polyethylene naphthalate , 
polypropylene , polyethylene , polyamide , and fiberglass - re 
inforced plastic . 
[ 0061 ] In addition , the present invention addresses a flex 
ible strain sensor , comprising : a flexible substrate ; an active 
layer formed on the flexible substrate and including the 
nanopatch graphene composite of the invention ; and an 
electrode electrically connected to the active layer . 
[ 0062 ] FIG . 2 is a flowchart showing the process of 
manufacturing the nanopatch graphene composite according 
to the present invention . 
[ 0063 ] Below , the method of manufacturing the nanopatch 
graphene composite according to the present invention is 
described below with reference to FIG . 2 . 
[ 0064 ] Specifically , graphene including a defect is pro 
vided ( step a ) . 
[ 0065 ] Next , the graphene is oxidized to bond a functional 
group containing an oxygen atom onto the defect , thus 
obtaining surface - modified graphene ( step b ) . 
[ 0066 ] The oxidizing may be selectively carried out on the 
defect of the graphene . 
[ 0067 ] The oxidizing may be performed using UV / ozone . 
[ 0068 ] Next , a self - assembled monolayer is attached to the 
functional group , thus obtaining the nanopatch graphene 
composite ( step c ) . 
[ 0069 ] In step c , the self - assembled monolayer may be 
formed by self - assembling a compound represented by 
Chemical Formula 1 below : 

[ Chemical Formula 1 ] 
[ Chemical Formula 1 ] 

- 

R ? — Si – 0 - R4 
- R — Si – 0 - R4 

[ 0070 ] in Chemical Formula 1 , 
[ 0071 ] Ri is a C3 to C30 alkyl group , 
[ 0072 ] R2 and R3 , which are identical to or different from 
each other , are independently a hydrogen atom or a C1 to C6 
alkyl group , and 
[ 0073 ] R * is a C1 to C6 alkyl group . 

EXAMPLES 

[ 0052 ] in Chemical Formula 1 , 
[ 0053 ] RP is a C3 to C30 alkyl group , 
[ 0054 ] R2 and R } , which are identical to or different from 
each other , are independently a hydrogen atom or a C1 to C6 
alkyl group , and 
[ 0055 ] R4 is a C1 to C6 alkyl group . 
[ 0056 ] The compound represented by Chemical Formula 1 
may be octadecyltrimethoxysilane ( OTS ) . 
[ 0057 ] The nanopatch may suppress or delay the fracture 
of the graphene growing on the defect upon transforming the 
graphene . 
[ 0058 ] The graphene may be at least one selected from the 
group consisting of single - layer graphene , double - layer gra 
phene and multilayer graphene . 
[ 0059 ] In addition , the present invention addresses an 
organic transistor , comprising : a flexible substrate ; a semi 
conductor layer on the substrate ; and a gate electrode , a 
source electrode and a drain electrode , wherein at least one 
selected from the group consisting of the gate electrode , the 
source electrode and the drain electrode includes the nano 
patch graphene composite of the invention . 
[ 0060 ] The flexible substrate may be at least one selected 
from the group consisting of polydimethylsiloxane , polyim 

[ 0074 ] A better understanding of the present invention will 
be given through the following Examples , which are merely 
set forth to illustrate , but are not to be construed as limiting 
the scope of the present invention . 

Example 1 - 1 : Manufacture of Nanopatch Graphene 
Composite Through Formation of Self - Assembled 
Monolayer Followed by Transfer Thereof onto 

SiO2 / Si Wafer 

[ 0075 ] A copper foil ( Alfa Aesar , product No . : 13382 ) was 
placed in a quartz chamber and heated to 1000° C . at a 
pressure of 50 mTorr for 1 hr in the presence of hydrogen gas 
of 10 sccm ( standard cubic centimeters per minute ) , 
whereby the surface thereof was reduced . Next , methane gas 
of 45 sccm was allowed to flow at a pressure of 300 mTorr 
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Example 1 - 3 : Nanopatch Graphene Composite 
Formed on Polyethylene Terephthalate ( PET ) 

[ 0080 ] A nanopatch graphene composite ( OTS - Graphene , 
OTS - G ) formed on polyethylene terephthalate ( PET ) was 
manufactured in the same manner as in Example 1 - 1 , with 
the exception that the graphene thin film on the copper foil 
was transferred onto the polyethylene terephthalate ( PET ) , 
in lieu of transferring the graphene thin film on the copper 
foil onto the SiO2 / Si wafer . 

for 30 min . Subsequently , the quartz chamber was rapidly 
cooled , and a single - layer graphene thin film was thus 
formed on the copper foil . 
[ 0076 ] . The single - layer graphene thin film was patterned 
through photolithography , after which the surface of the 
graphene was treated with UV / ozone for 3 min . A 3 mm 
OTS solution , prepared by stirring 10 mL of 1 , 1 , 2 - trichlo 
roethylene ( Sigma - Aldrich ) solution and 12 uL of octade 
cyltrimethoxysilane ( Gelest , Inc . ) solution , was applied on 
the graphene substrate through a spin - coating process , after 
which an ammonia water atmosphere was created in the 
chamber and the sample was stored therein for about 10 hr , 
thereby inducing the covalent bonding of the OTS molecule 
and the graphene surface . Thereafter , the sample was taken 
out of the chamber , and unreacted OTS molecules were 
washed off from the graphene surface with an acetone 
solution , followed by drying . Finally , the graphene thin film 
on the copper foil was transferred onto a SiO , / Si wafer , 
thereby manufacturing a nanopatch graphene composite 
( OTS - Graphene , OTS - G ) . 

Example 1 - 4 : Nanopatch Graphene Composite 
Formed on Polydimethylsiloxane ( PDMS ) 

10081 ] A nanopatch graphene composite ( OTS - Graphene , 
OTS - G ) formed on polydimethylsiloxane ( PDMS ) was 
manufactured in the same manner as in Example 1 - 1 , with 
the exception that the graphene thin film on the copper foil 
was transferred onto the polydimethylsiloxane ( PDMS ) , in 
lieu of transferring the graphene thin film on the copper foil 
onto the SiO2 / Si wafer . 

Example 1 - 2 : Manufacture of Nanopatch Graphene 
Composite Through Transfer of Graphene onto 

SiO2 / Si Wafer Followed by Formation of 
Self - Assembled Monolayer 

Comparative Example 1 : Pristine Graphene Thin 
Film ( Pristine Graphene ) 

[ 0082 ] A copper foil ( Alfa Aesar , product No . : 13382 ) was 
placed in a quartz chamber and heated to 1000° C . at a 
pressure of 50 m Torr for 1 hr in the presence of hydrogen gas 
of 10 sccm , whereby the surface thereof was reduced . Next , 
methane gas of 45 sccm was allowed to flow at a pressure 
of 300 m Torr for 30 min . Subsequently , the quartz chamber 
was rapidly cooled , and thus a pristine graphene thin film on 
the copper foil was manufactured . The grown single - layer 
graphene thin film was transferred onto a silicon wafer ( or 
a polymer substrate ) using the PMMA support layer . 

Comparative Example 2 : Exfoliated Graphene 
[ 0083 ] Exfoliated graphene was manufactured by exfoli 
ating graphene from graphite ( Kish graphite , Covalent 
Materials Inc . ) using the adhesive force of Scotch tape . 

[ 0077 ] A copper foil ( Alfa Aesar , product No . : 13382 ) was 
placed in a quartz chamber and heated to 1000° C . at a 
pressure of 50 m Torr for 1 hr in the presence of hydrogen gas 
of 10 sccm ( standard cubic centimeters per minute ) , 
whereby the surface thereof was reduced . Next , methane gas 
of 45 sccm was allowed to flow at a pressure of 300 m Torr 
for 30 min . Subsequently , the quartz chamber was rapidly 
cooled , and a single - layer graphene thin film was thus 
formed on the copper foil . 
[ 0078 ] The single - layer graphene thin film formed on the 
copper foil was spin - coated with a poly ( methyl methacry 
late ) film ( Aldrich , PMMA product No . : 162265 , Mw = 996 
kg mol - ) , and graphene present on the surface opposite the 
coating surface was removed through oxygen plasma . The 
PMMA / graphene / copper foil was floated on the surface of 
an aqueous solution containing 0 . 1 M ammonium sulfate 
( ( NH4 ) 2S203 ) to remove the copper foil , and the PMMA / 
graphene film was transferred to deionized water . Next , the 
PMMA / graphene film was transferred onto a Si0 , / Si wafer 
having a thickness of 300 nm and then baked at 120° C . , and 
PMMA was removed with acetone . Subsequently , patterning 
was performed through photolithography . 
[ 0079 ] Thereafter , in order to functionalize the graphene 
surface , UV / ozone treatment ( AH1700 , Ahtech LTS ) was 
conducted for 3 min . A 3 mM OTS solution , prepared by 
stirring 10 mL of 1 , 1 , 2 - trichloroethylene ( Sigma - Aldrich ) 
solution and 12 uL of octadecyltrimethoxysilane ( Gelest , 
Inc . ) solution , was applied on the graphene substrate through 
a spin - coating process , after which an ammonia water atmo 
sphere was created in the chamber and the sample was stored 
therein for about 10 hr , thereby inducing the covalent 
bonding of the OTS molecule and the graphene surface . 
Thereafter , the sample was taken out of the chamber , and 
unreacted OTS molecules were washed off from the gra 
phene surface with deionized water , isopropyl alcohol ( IPA ) 
and an acetone solution , followed by drying . Finally , a 
nanopatch graphene composite ( OTS - Graphene , OTS - G ) on 
a SiO / Si wafer was manufactured . 

Device Example 1 : Fabrication of Field Emission 
Transistor Including Nanopatch Graphene 

Composite 
[ 0084 ] A field emission transistor including the nanopatch 
graphene composite was fabricated by thermally depositing , 
as a source electrode and a drain electrode , a 60 nm - thick Au 
electrode ( L = 150 m , W = 300 um ) on the nanopatch graphene 
composite manufactured in Example 1 - 1 . 
0085 ] Fabrication of Flexible Organic Transistor 

Device Example 2 : Fabrication of Flexible Organic 
Transistor Including Nanopatch Graphene 

Composite 
[ 0086 ] A 2 . 5 um - thick perylene thin film was thermally 
deposited in a vacuum on a silicon wafer . On the perylenel 
silicon wafer substrate , a 2 um - thick polyimide layer was 
applied through spin coating . On the polyimide / perylenel 
silicon wafer substrate , the gate electrode - patterned nanop 
atch graphene composite ( OTS - G ) of Example 1 - 1 was 
introduced . On the gate electrode - patterned nanopatch gra 
phene composite / polyimide / perylene / silicon wafer sub 
strate , an aluminum oxide insulating layer was deposited to 
a thickness of 30 to 100 nm through ALD ( Atomic Layer 
Deposition ) . On the A1Ox / gate electrode - patterned nanop 
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Comparative Device Example 3 : Fabrication of 
Flexible Organic Transistor Including Pristine 

Graphene Thin Film 

atch graphene composite / polyimide / perylene / silicon wafer 
substrate , the source / drain electrode - patterned nanopatch 
graphene composite of Example 1 - 1 was introduced . Finally , 
the substrate was deposited with a 50 nm - thick organic 
semiconductor pentacene ( Sigma - Aldrich ) at a rate of 0 . 2 
Ås - , thereby fabricating a flexible organic transistor includ 
ing the nanopatch graphene composite . 

[ 0093 ] A flexible organic transistor including the pristine 
graphene thin film was fabricated in the same manner as in 
Device Example 3 , with the exception that the pristine 
graphene thin film manufactured in Comparative Example 1 
was introduced in lieu of introducing the gate electrode 
patterned nanopatch graphene composite ( OTS - G ) and the 
source / drain electrode - patterned nanopatch graphene com 
posite . 

Device Example 3 : Fabrication of Flexible Organic 
Transistor Including Nanopatch Graphene 

Composite 
[ 0087 ] A flexible organic transistor including the nanop 
atch graphene composite was fabricated in the same manner 
as in Device Example 2 , with the exception that an organic 
semiconductor DNTT ( dinaphtho [ 2 , 3 - b : 24 , 3 ' - f | thieno [ 3 , 2 - b ] 
thiophene , Sigma - Aldrich ) was deposited on the substrate , 
in lieu of depositing the organic semiconductor pentacene on 
the substrate . 

Comparative Device Example 4 : Fabrication of 
Flexible Organic Transistor Including Pristine 

Graphene Thin Film 
[ 0094 ] A flexible organic transistor including the pristine 
graphene thin film was fabricated in the same manner as in 
Device Example 4 , with the exception that the pristine 
graphene thin film manufactured in Comparative Example 1 
was introduced in lieu of introducing the gate electrode 
patterned nanopatch graphene composite ( OTS - G ) and the 
source / drain electrode - patterned nanopatch graphene com 
posite . 

Device Example 4 : Fabrication of Flexible Organic 
Transistor Including Nanopatch Graphene 

Composite 
[ 0088 ] A flexible organic transistor including the nanop 
atch graphene composite was fabricated in the same manner 
as in Device Example 3 , with the exception that an organic 
semiconductor Cg - BTBT ( 2 , 7 - dioctyl [ l ] benzothieno [ 3 , 2 - b ] 
[ 1 ] benzothiophene , Sigma - Aldrich ) was deposited on the 
substrate , in lieu of depositing pentacene on the substrate . 
[ 0089 ] Fabrication of Flexible Strain Sensor 

TEST EXAMPLES 

Device Example 5 : Fabrication of Flexible Strain 
Sensor Including Nanopatch Graphene Composite 

Formed on Polydimethylsiloxane ( PDMS ) 

[ 0090 ] A flexible strain sensor was fabricated by deposit 
ing liquid metal ( gallium - indium eutectic , product No . : 
495425 ) as both electrodes on the nanopatch graphene 
composite of Example 1 - 4 . 

Test Example 1 : AFM Morphology Analysis 
[ 0095 ] FIG . 3 shows the AFM ( Atomic Force Microscopy ) 
images of Example 1 - 1 and Comparative Example 1 , and 
AFM analysis was performed using a Veeco NanoScope 8 . 
[ 0096 ] With reference to FIG . 3 , unlike the surface of the 
graphene thin film of Comparative Example 1 , the surface of 
the nanopatch graphene composite of Example 1 - 1 can be 
seen to show many small patches having a size ranging from 
2 nm to 25 nm . 

Comparative Device Example 1 : Fabrication of 
Field Emission Transistor Including Pristine 

Graphene Thin Film 
[ 0091 ] A field emission transistor including the pristine 
graphene thin film was fabricated in the same manner as in 
Device Example 1 , with the exception that a 60 nm - thick Au 
electrode was thermally deposited on the pristine graphene 
thin film manufactured in Comparative Example 1 , in lieu of 
thermally depositing the 60 nm - thick Au electrode on the 
nanopatch graphene composite manufactured in Example 
1 - 1 . 

Test Example 2 : Analysis of Structure of 
Nanopatch on Nanopatch Graphene Composite 

[ 0097 ] FIG . 4A shows a STEM image of Example 1 - 1 
using an energy dispersive spectrometer ( EDS ) , FIG . 4B 
shows the selected area electron diffraction ( SAED ) pattern 
thereof , FIG . 4C shows the results of measurement of 
grazing incidence X - ray diffraction ( GIXD ) thereof , and 
FIG . 4D shows the epitaxial structure of the self - assembled 
nanopatch layer in graphene . 
10098 ] As shown in FIG . 4A , the silicon atom was present 
at the position of the self - assembled nanopatch of Example 
1 - 1 , and the self - assembled nanopatch was composed of 
OTS molecules . 
[ 0099 ] As shown in FIGS . 4B and 4D , the crystal structure 
of the self - assembled nanopatch of Example 1 - 1 had a 
hexagonal structure and exhibited weak epitaxy on the 
graphene surface , and the electron diffraction pattern of the 
self - assembled nanopatch crystal was distorted by about 14° 
from the hexagonal pattern of graphene . As shown in FIG . 
4C , the OTS structure of the graphene surface was very 
similar to the OTS structure of the SiO surface . 
[ 0100 ] Thus , the self - assembled nanopatch was config 
ured such that the upper hexagonal OTS structure was 
formed on the graphene lattice . 

Comparative Device Example 2 : Fabrication of 
Flexible Organic Transistor Including Pristine 

Graphene Thin Film 

[ 0092 ] A flexible organic transistor including the pristine 
graphene thin film was fabricated in the same manner as in 
Device Example 2 , with the exception that the pristine 
graphene thin film manufactured in Comparative Example 1 
was introduced in lieu of introducing the gate electrode 
patterned nanopatch graphene composite ( OTS - G ) and the 
source / drain electrode - patterned nanopatch graphene com 
posite . 
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Test Example 3 : Analysis of UV - Vis Spectra 
[ 0101 ] FIG . 5 shows the results of analysis of UV - vis 
spectra of Example 1 - 1 and Comparative Example 1 , and the 
analysis of UV - vis spectra was performed using a CARY 
5000 from Varian . 
[ 0102 ] As shown in FIG . 5 , the transmittance of the 
nanopatch graphene composite of Example 1 - 1 was almost 
the same as the transmittance of the pristine graphene thin 
film of Comparative Example 1 . 
[ 0103 ] Thus , the high transmittance of the nanopatch 
graphene composite of Example 1 - 1 was maintained . 

[ 0109 ] As shown in FIG . 7B , the fracture load of the 
nanopatch graphene composite of Example 1 - 1 was 60 % 
higher than that of the graphene of Comparative Example 1 . 
Thereby , the two - dimensional fracture strength ( o2D ) values 
of Comparative Example 2 , Comparative Example 1 and 
Example 1 - 1 were calculated to be 43 . 5 , 39 . 1 and 52 . 7 
Nm - - , respectively , which means that the fracture strength 
of the nanopatch graphene composite of Example 1 - 1 was 
increased by 35 % compared to the nanopatch graphene 
composite of Comparative Example 1 . 
[ 0110 ] Thus , in the nanopatch graphene composite accord 
ing to the present invention , the elastic coefficient ( Young 
modulus ) was maintained and the two - dimensional fracture 
strength was measured and found to be high compared to 
that of conventional graphene , from which the mechanical 
properties are evaluated to be greatly improved . 

Test Example 4 : Measurement of Current - Voltage 
Change of Graphene Field Emission Transistor 

[ 0104 ] FIG . 6A schematically shows a graphene field 
emission transistor , and FIG . 6B shows the results of cur 
rent - voltage change in the field emission transistors ( VDS = 1 
mV ) of Device Example 1 and Comparative Device 
Example 1 . 
[ 0105 ] As shown in FIGS . 6A and 6B , the average hole 
mobility values of Comparative Device Example 1 and 
Device Example 1 were measured to be 8 , 490 and 9 , 240 
cm ? v - ts - ? , respectively , through current - voltage change of 
the field emission transistor ( FET ) . 
[ 0106 ] Thus , the electrical properties of graphene were 
maintained even when the self - assembled nanopatch was 
formed on the surface thereof . 

Test Example 6 : Difference in Performance of 
Organic Transistor Due to Introduction of 

Nanopatch Graphene Composite 

Test Example 5 : Comparison of Mechanical 
Properties of Graphene 

[ 0107 ] FIG . 7A shows the results of nanoindentation of 
Example 1 - 1 and Comparative Examples 1 and 2 , and FIG . 
7B shows the histogram of fracture load . 
[ 0108 ] As shown in FIG . 7A , two - dimensional Young 
modulus ( E21 ) values of Comparative Example 2 , Com 
parative Example 1 and Example 1 - 1 were 346 , 312 and 356 
Nm - , respectively . A higher load was applied in order to 
fracture the nanopatch graphene composite of Example 1 - 1 , 
compared to that for fracturing the graphene of Comparative 
Example 1 or 2 . 

[ 0111 ] FIGS . 8A , 8B and 8C are graphs showing the 
transfer properties of the organic transistors of Device 
Example 2 and Comparative Device Example 2 ( FIG . 8A ) , 
Device Example 3 and Comparative Device Example 3 
( FIG . 8B ) , and Device Example 4 and Comparative Device 
Example 4 ( FIG . 8C ) ( red : Device Examples 2 to 4 , black : 
Comparative Device Examples 2 to 4 ) . 
[ 0112 ] As shown in FIGS . 8A , 8B and 8C , the drain 
current value and the current on / off ratio were higher in 
Device Examples 2 to 4 than in Comparative Device 
Examples 2 to 4 . 
[ 0113 ] The performance indexes of the organic transistors 
of Device Examples 2 to 4 and Comparative Device 
Examples 2 to 4 are summarized in Table 1 below . 
[ 0114 ] As set forth in Table 1 , the organic transistors of 
Device Examples 2 to 4 exhibited high charge mobility and 
low electrode contact resistance compared to the organic 
transistors of Comparative Device Examples 2 to 4 . 

TABLE 1 

Average hole Threshold 
mobility voltage 
( cm ? / Vs ) ( V ) 

Organic 
semiconductor Device 

Width normalized 
contact 

resistance 
( MOhm · cm ) 

On / off 
current 
ratio 

Pentacene 104 2 . 1 0 . 039 
( + 0 . 04 ) 

- 11 . 4 
( + 4 . 3 ) 

0 . 79 0 . 14 
( + 0 . 03 ) 

0 . 16 
( + 0 . 11 ) 

- 9 . 8 
( + 3 . 7 ) 
- 8 . 3 

( 4 . 3 ) 
DNTT 1 . 7 

Comparative 
Device 
Example 2 
Device 
Example 2 
Comparative 
Device 
Example 3 
Device 
Example 3 
Comparative 
Device 
Example 4 
Device 
Example 4 

0 . 25 0 . 79 

( + 0 . 17 ) 
0 . 035 

( + 0 . 03 ) 
Cg - BTBT 

- 8 . 3 
( + 4 . 2 ) 
- 1 . 2 

( 13 . 6 ) 
5 . 1 106 5 . 1 

107 1 . 4 0 . 12 

( + 0 . 04 ) 
- 2 . 6 

( 12 . 7 ) 
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[ 0115 ] Therefore , the organic transistors of Device 
Examples 2 to 4 are evaluated to exhibit superior perfor 
mance compared to the organic transistors of Comparative 
Device Examples 2 to 4 . 

Test Example 7 : Changes in Molecular Alignment 
of Organic Semiconductor 

[ 0116 ] FIG . 9 shows the results of analysis of two - dimen 
sional grazing incidence X - ray diffraction patterns of Device 
Examples 2 and 3 and Comparative Device Examples 2 and 

[ 0117 ] As shown in FIG . 9 , the organic semiconductor was 
subjected to vertical alignment relative to the substrate in 
Device Examples 2 and 3 , and to planar alignment relative 
to the substrate in Comparative Device Examples 2 and 3 . 
Upon vertical alignment , the charge transport becomes 
favorable in a transverse direction at the interface between 
the electrode and the channel . In the planar alignment , 
charge transport near the electrode may be adversely 
affected . 
10118 ] Thus , the molecular alignment of the organic semi 
conductor layer growing on the nanopatch graphene com 
posite of Device Examples 2 and 3 was induced so as to 
become favorable for charge injection , whereby the perfor 
mance of the organic transistor device was increased . 

exhibited a drastic resistance increase from 3 % stretching 
under direct tensile strain , but the nanopatch graphene 
composite manufactured in Example 1 - 4 , stretched the same 
amount , exhibited resistance stability that was increased at 
least 1000 times . 
[ 0125 ] For bending and stretching , the nanopatch gra 
phene composites manufactured in Examples 1 - 3 and 1 - 4 
manifested superior mechano - electric stability compared to 
the pristine graphene thin film manufactured in Comparative 
Example 1 . 

Test Example 10 : Changes in Resistance of 
Flexible Strain Sensor Including Nanopatch 

Graphene Composite Formed on 
Polydimethylsiloxane ( PDMS ) 

[ 0126 ] FIGS . 13A and 13B are graphs showing changes in 
resistance depending on the movement of Device Example 
5 attached to the finger and the back of the hand , respec 
tively . 
[ 0127 ] As shown in FIGS . 13A and 13B , the flexible strain 
sensor of Device Example 5 is able to adequately convert 
changes in strain depending on the movement of the finger 
and the back of the hand into an electrical signal within a 
significant time range . 
[ 0128 ] Thus , based on the performance of the flexible 
strain sensor of Device Example 5 , the nanopatch graphene 
composite of the invention can be found to be efficiently 
applicable to the sensor . 
( 0129 ] The scope of the invention is represented by the 
claims below rather than the aforementioned detailed 
description , and all of the changes or modified forms that are 
derived from the meaning , range , and equivalent concepts of 
the appended claims should be construed as being included 
in the scope of the present invention . 
What is claimed is : 
1 . A nanopatch graphene composite , comprising : 
a graphene including a defect ; and 
a nanopatch disposed on the defect . 
2 . The nanopatch graphene composite of claim 1 , wherein 

the defect is at least one selected from the group consisting 
of a grain boundary , a dot defect , a line defect , cracking , 
folding , and wrinkling . 

3 . The nanopatch graphene composite of claim 2 , wherein 
the nanopatch includes a self - assembled monolayer ( SAM ) . 

4 . The nanopatch graphene composite of claim 3 , wherein 
the self - assembled monolayer is formed by self - assembling , 
on the defect , a compound represented by Chemical For 
mula 1 below : 

Test Example 8 : Comparison of Electrical 
Properties of Nanopatch Graphene Composite 

Through Graphene Transfer Followed by 
Nanopatch Formation and Through Nanopatch 
Formation Followed by Graphene Transfer 

[ 0119 ] FIG . 10 is a schematic view showing the measure 
ment of resistance of the nanopatch graphene composites of 
Examples 1 - 1 and 1 - 2 . 
[ 0120 ] As shown in FIG . 10 , the nanopatch graphene 
composite of each of Examples 1 - 1 and 1 - 2 was transferred 
onto the PET film , in lieu of transfer onto the Si0 , / Si wafer , 
after which the Au electrode was patterned and the resis 
tance thereof was measured . The average resistance mea 
surements were 0 . 301 ohm and 0 . 372 ohm , which are similar 
to each other . 
[ 0121 ] Thus , the nanopatch graphene composites of 
Examples 1 - 1 and 1 - 2 exhibited similar electrical properties . 

[ Chemical Formula 1 ] 

R — Si – 0 - R4 

Test Example 9 : Evaluation of Bendability , 
Stretchability and Tensile Strain of Graphene 

[ 0122 ] FIG . 11A shows the bending test system of a 
bending radius of 5 mm in Example 1 - 3 and Comparative 
Example 1 , and FIG . 11B shows the results of measurement 
of electrical resistance under repeated bending strain of 5 
mm . Also , FIG . 12A shows a stretching test system ( scale 
bar , 2 cm ) using a PDMS substrate in Example 1 - 4 and 
Comparative Example 1 , and FIG . 12B is a graph showing 
the results of measurement of resistance under tensile strain . 
[ 0123 ] As shown in FIGS . 11A and 11B , the pristine 
graphene thin film manufactured in Comparative Example 1 
was drastically increased ( 30 - 50 % ) in electrical resistance 
after 10 repeated bending processes , whereas the nanopatch 
graphene composite of Example 1 - 3 exhibited an increase in 
electrical resistance of only 10 % upon about 1000 bending 
processes . 
[ 0124 ] As shown in FIGS . 12A and 12B , the pristine 
graphene thin film manufactured in Comparative Example 1 

in Chemical Formula 1 , 
R1 is a C3 to C30 alkyl group , 
R2 and R " , which are identical to or different from each 

other , are independently a hydrogen atom or a C1 to C6 
alkyl group , and 

R4 is a C1 to C6 alkyl group . 
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11 . A method of manufacturing a nanopatch graphene 
composite , comprising : 

( a ) providing graphene including a defect ; 
( b ) oxidizing the graphene to form a functional group 

containing an oxygen atom on the defect , thus obtain 
ing surface - modified graphene ; and 

( c ) bonding a self - assembled monolayer to the functional 
group , thus obtaining the nanopatch graphene compos 
ite . 

12 . The method of claim 11 , wherein , in step ( c ) , the 
self - assembled monolayer is formed by self - assembling a 
compound represented by Chemical Formula 1 below : 

[ Chemical Formula 1 ] 

5 . The nanopatch graphene composite of claim 4 , wherein 
the compound represented by Chemical Formula 1 is octa 
decyltrimethoxysilane ( OTS ) . 

6 . The nanopatch graphene composite of claim 1 , wherein 
the nanopatch suppresses or delays fracture of the graphene 
growing on the defect upon transforming the graphene . 

7 . The nanopatch graphene composite of claim 1 , wherein 
the graphene is at least one selected from the group con 
sisting of single - layer graphene , double - layer graphene and 
multilayer graphene . 

8 . An organic transistor , comprising : 
a flexible substrate ; 
a semiconductor layer on the flexible substrate ; and 
a gate electrode , a source electrode and a drain electrode , 
wherein at least one selected from the group consisting of 

the gate electrode , the source electrode and the drain 
electrode includes the nanopatch graphene composite 
of claim 1 . 

9 . The organic transistor of claim 8 , wherein the flexible 
substrate is at least one selected from the group consisting of 
polydimethylsiloxane , polyimide , polyethylene terephtha 
late , polyethylene naphthalate , polypropylene , polyethylene , 
polyamide and fiberglass - reinforced plastic . 

10 . A flexible strain sensor , comprising : 
a flexible substrate ; 
an active layer formed on the flexible substrate and 

including the nanopatch graphene composite of claim 
1 ; and 

an electrode electrically connected to the active layer . 

R — Si – 0 - R4 

R3 

in Chemical Formula 1 , 
Rl is a C3 to C30 alkyl group , 
R2 and R " , which are identical to or different from each 

other , are independently a hydrogen atom or a C1 to C6 
alkyl group , and 

R4 is a C1 to C6 alkyl group . 
13 . The method of claim 11 , wherein the oxidizing is 

selectively carried out on the defect of the graphene . 
14 . The method of claim 13 , wherein the oxidizing is 

performed using UV / ozone . 
* * * * * 


